Extended high-temperature series expansions for the spin-s Ising model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1983 J. Phys. A: Math. Gen. 162875
(http://iopscience.iop.org/0305-4470/16/12/033)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 06:27

Please note that terms and conditions apply.

COMMENT

Extended high-temperature series expansions for the spin-s Ising model

S McKenzie ${ }^{\dagger}$
Department of Physics, King's College London, Strand, London WC2R 2LS, UK

Received 7 February 1983

Abstract

Extended high-temperature series expansions are presented for the spin-s Ising model on the face-centred cubic lattice. Series coefficients for the zero-field internal energy (U_{0}) and the second moment (μ_{2}) of the correlation function are derived, for $\frac{1}{2} \leqslant s \leqslant \frac{9}{2}$, to order 14 in the high-temperature expansion variable $K(=J / k T)$. For $s=\frac{1}{2}$, the fourth field derivative of the free energy is calculated to order K^{14} and the magnetisation series is given to order 13 and 27 in the temperature and magnetic field variables respectively. For $s=1$ to $\frac{9}{2}$, the zero-fieid susceptibility series are derived to order K^{14}.

1. Introduction

The purpose of this paper is to present new high-temperature series expansion data for the spin-s Ising model on the face-centred cubic (FCC) lattice. The use of series expansions in the study of critical behaviour is well established (see Domb 1974a for a review) and extrapolation techniques for estimating critical exponents, amplitudes and other critical parameters are reviewed in Gaunt and Guttmann (1974).

The exponents γ, ν, α and Δ, characterising the high-temperature susceptibility, correlation length, specific heat and successive (even) field derivatives of the free energy, are of interest in establishing the validity of the hyperscaling relations

$$
\begin{equation*}
d \nu=2-\alpha, \quad 2 \Delta=\gamma+d \nu \tag{1}
\end{equation*}
$$

where d is the spatial dimensionality of the system. The validity of (1) as assumed by the renormalisation group (RG) theory is still a matter of controversy, as is the observed discrepancy between series estimates and RG calculations of γ, ν, and α (Camp et al 1976, Baker 1977, Zinn-Justin 1979). These exponents have been the subject of much recent investigation (Gaunt 1982 and references cited therein), and a difference of opinion exists as to whether the discrepancies can be resolved by invoking 'correction-to-scaling' terms (Nickel 1982, Zinn-Justin 1981, Roskies $1981 a, b$), or whether the discrepancies are real, and represent a fundamental difference between the two approaches (Baker 1982, Freedman and Baker 1982).

Longer series expansions are useful for improving the reliability of exponent estimates, especially with the recently developed methods of analysis for confluent
\dagger Present address: Department of Chemistry, Royal Holloway College, University of London, Egham Hill, Surey TW20 0EX, UK.
corrections to scaling (Camp and Van Dyke 1975, McKenzie 1979b, Rehr et al 1980, Roskies 1981b). Expansions to order 21 in K for the susceptibility (χ_{0}) and the second moment (μ_{2}) of the correlation function on the body-centred cubic (BCC) lattice were derived by Nickel (1982), while the μ_{2} series on the simple cubic (SC) lattice was extended to fifteenth order by Roskies (1981a). Earlier work on the $s=\frac{1}{2}$ model is summarised in Gaunt (1982), while that on the general spin model is discussed in Domb (1974a).

In this paper we present new series coefficients for the FCC lattice. It is generally accepted (Baker 1977) that series expansions on this lattice yield the sharpest estimates for critical exponents, while Nickel and Sharpe (1979) conclude that 'the question of the validity of hyperscaling may be resolved by the extension of available series (on this lattice) by a few more terms'.

2. Derivation of series

The data presented here were derived using the linked cluster expansion (Wortis 1974) and the star graph method (Sykes et al 1974, Domb 1974b, McKenzie 1980, 1982). Several of the new series coefficients were calculated by both methods, so as to obtain an independent check on the computations.

The vertex renormalised form of the linked cluster expansion was used to derive the magnetisation (M) series to order $K^{13}, \tau^{27}(\tau=\tanh m H / k t$ is the usual magnetic field variable) for $s=\frac{1}{2}$ and to order $K^{13}, h^{5}(h=m H / k T)$, for $1 \leqslant s \leqslant \frac{9}{2}$. The renormalised semi-invariants $M_{n}(K, h=0)$ were also calculated at this stage. The M_{n} were then used, together with the necessary graphical data (Wortis 1974, McKenzie 1982) to obtain the spin-spin correlation function $\Gamma(r, K, h=0)$ to order K^{14} for all lattice sites r accessible in up to 14 steps from the origin. For $s=\frac{1}{2}$, a change of variable yields the corresponding series in $v=\tanh K$, with integer coefficients.

The star graph method was used (for $s=\frac{1}{2}$) to calculate the zero-field free energy ($F_{0}=-k T \ln Z_{0}$, where Z_{0} is the zero-field partition function) to order v^{15} and the fourth field derivative of the free energy $\left(\chi_{0}^{(2)}=\partial^{4} \ln Z / \partial h^{4}\right)$ to order 14 in v. The susceptibility series to order 15 is available in McKenzie (1975).

The first and third derivatives of M with respect to the field variable h yield χ_{0} and $\chi_{0}^{(2)}$ to order 13 in $v\left(s=\frac{1}{2}\right)$ or $K\left(s>\frac{1}{2}\right)$. Thus
$-F / k T=\ln Z=\ln 2+\ln \cosh (m H / k T)+6 \ln (\cosh K)+\sum_{n} K^{n} \sum_{m} t_{n m} h^{2 m}$,
$Z_{0}=Z(h=0), \quad M / m=\partial \ln Z / \partial h=\sum_{n} K^{n} \sum_{m} b_{n m} h^{2 m+1}$,
$k T \chi_{0} / m_{2}=\partial^{2} \ln Z /\left.\partial h^{2}\right|_{h=0}=\sum_{n} a_{n} K^{n}, \quad \chi_{0}^{(2)}=m \partial^{4} \ln Z /\left.\partial h^{4}\right|_{h=0}=-2 \sum_{n} d_{n} K^{n}$.

For $s=\frac{1}{2}$, the expansion variables $v=\tanh K$ and $\tau=\tanh (h)$ were used. Since M is known to order K^{13}, the coefficients in (2c)-(2e) are obtained through $n=13$. For $s=\frac{1}{2}$, the $b_{n m}$ were calculated for $m \leqslant 27$, while for $s>\frac{1}{2}$ they were derived only for $m \leqslant 5$.

The correlation functions yield the zero-field internal energy (U_{0}), the zero-field susceptibility and the second moment (μ_{2}) series to order 14 in v or K. Thus, denoting
the nearest-neighbour (NN) correlations by $\Gamma(011)$, we obtain

$$
\begin{align*}
&-2 U_{0} / J=(2 / J) \partial \ln Z_{0} / \partial \beta=12 \Gamma(011)=\sum_{n} c_{n} K^{n}, \tag{3a}\\
& k T \chi_{0} / m^{2}=1+\sum_{r} \Gamma(\boldsymbol{r})=\sum_{n} a_{n} K^{n}, \quad \mu_{2}=\sum_{r}|\boldsymbol{r}|^{2} \Gamma(\boldsymbol{r})=\sum_{n} g_{n} K^{n}, \tag{3b,c}
\end{align*}
$$

where r is measured in units of lattice spacing and $\beta=1 / k T$. For $s=\frac{1}{2}$, the variable v was used instead of K.

3. Series coefficients for $s=\frac{1}{2}$: results and checks

The coefficients c_{n}, d_{n} and g_{n} (equations (2), (3)) are presented in table 1 , for $11 \leqslant n \leqslant 14$. The c_{n} were calculated (a) from the star graph expansion for $\ln Z_{0}$ and (b) from the NN correlations. Exact agreement was obtained. The c_{n} for $n \leqslant 13$ can also be obtained from the data in Sykes et al (1972). The last coefficient is new. The d_{n} for $n \leqslant 10$ agree with those obtained from the data in Katsura et al (1977) and McKenzie (1979a). The last four coefficients are new, of which all but d_{14} were calculated by two independent methods. The g_{n} for $n \leqslant 11$ are in agreement with Moore et al (1969). Their results at the twelfth order are known to contain a systematic error. Since the correlation functions calculated in this work yield the susceptibility coefficients a_{n} (equation (3b)) which agree with star graph expansion results (McKenzie 1975) to order 14, we are reasonably confident that the g_{n} are also correct to this order.

Table 1. Spin- $-\frac{1}{2}$ Ising model. Series expansion coefficients for the fourth field derivative of free energy, second moment of the correlation function and the zero-field internal energy. See text (equations (2) and (3)) for details. Expansion variable is $v=\tanh (J / k T$).

n	$d(n)$	$g(n)$	$c(n)$
11	71478104161584	2768965884780	2426029920
12	905771858693612	30958968926304	20385641184
13	11275505053670640	342680506367244	173375661192
14	138209819523812196	3760615283556000	1489839525168

The coefficients $b_{n m}$ of the magnetisation series (equation ($2 c$)) are given in table 2 for $11 \leqslant n \leqslant 13, m \leqslant 27$. The earlier terms were found to be in complete agreement with those derived from the data in Katsura et al (1977) and McKenzie (1979a).

4. Data for $1 \leqslant s \leqslant \frac{9}{2}$

The series coefficients c_{n}, a_{n} and g_{n} of the internal energy (U_{0}), susceptibility $\left(\chi_{0}\right)$ and the second moment of the correlation function $\left(\mu_{2}\right)$ for $1 \leqslant s \leqslant \frac{9}{2}, 11 \leqslant n \leqslant 14$ are presented in tables $3-5$ respectively. The expansion variable is K, not v. All the coefficients to order 11 are in agreement with earlier work (Camp et al 1976, Camp and Van Dyke 1975, Saul et al 1975). The twelfth-order terms differ slightly from the published ones, but the latter are known to contain a systematic error (Saul et al 1975, reference 31). The last two coefficients are new.

Table 2. Coefficients $b(n, m)$ of the magnetisation series for the spin- $\frac{1}{2}$ Ising model. The expansion variables are $v=\tanh (J / k T)$ and $\tau=\tanh (m H / k T)$.

n	11	12	13
1	162961837500	1634743178420	16373484437340
3	-23771714108028	-301379038505064	-3753043856411100
5	679423992056904	10633839254218744	161207055875954136
7	-7785592610770440	-148835296267299336	-2717905704547680600
9	46684523756745384	1088102658184129556	23859656665009001184
11	-166427520872014248	-4755069400513102400	$-1255442894477526390,2$
13	376498957466012640	13356000248106561728	428127979493625142944
15	-555993772413784416	-25033249777453739200	-988718669065446670368
17	535336491372858264	31708163796312206816	1579597613009622561768
19	-324400598896549080	-26851090827150877104	-1750522764971515173672
21	112451334484745472	14582382995454822960	1322649095505173540928
23	-17019637527029952	-4596761931663075312	-650716104810749337600
25		640023440031480192	188072084580154406496
27			-24244165639077132384

Table 3. Spin-s Ising model. Coefficients of the internal energy series $(3 a)$. The expansion variable is $K=J / k T$.

| | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: |
| s | 11 | 12 | 13 | 14 |
| 1.0 | 38220641.135876 | 223566184.191949 | 1322852889.802774 | 7905360519.466169 |
| 1.5 | 5350175.060976 | 26479837.939179 | 132522861.464447 | 669639912.588496 |
| 2.0 | 1662877.567593 | 7458461.308557 | 33820591.399575 | 154817986.148786 |
| 2.5 | 764091.837537 | 3210572.389300 | 13636891.132117 | 58468136.874257 |
| 3.0 | 438328.177097 | 1757972.863055 | 7126766.519956 | 29162259.813881 |
| 3.5 | 288775.271587 | 1184413.383102 | 4378182.470850 | 17298914.515254 |
| 4.0 | 208635.210554 | 786361.089993 | 2995662.931872 | 11518268.842479 |
| 4.5 | 160798.839897 | 593009.933736 | 2210388.020245 | 8315552.936889 |

Table 4. Spin-s Ising model. Coefficients of the susceptibility series (2d). The expansion variable is $K=J / k T$.

Table 5. Spin-s Ising model. Series coefficients for the second moment of the correlation function. The expansion variable is $K=J / k T$.

s	11	12	14	
1.0	27505317890.383	212457469283.931	1625420767814.491	12333782918414.818
1.5	3335449160.090	21711509856.038	140004046089.529	895554479535.982
2.0	974154748.992	5734658063.513	33445456506.425	193507258378.028
2.5	433216160.145	2386305269.158	13023160887.809	70510441213.815
3.0	243751368.075	1280658851.091	6666537847.443	34428932166.216
3.5	158602597.181	804308045.269	4041312628.749	20145825924.397
4.0	113622780.496	560568785.493	2740219835.286	13289504836.274
4.5	87045770.505	420102000.503	2008900617.483	9530860923.691

The same graphical data and programs were used in the calculations for all values of spin. Since the $s=\frac{1}{2}$ series could be independently verified in several cases, we can be reasonably confident of the correctness of the data for the other values of s.

5. Conclusions

Extended high-temperature series expansion data are derived for the spin-s Ising model on the FCC lattice. Complete agreement is obtained with all earlier work. Several of the new coefficients are calculated by two independent methods.

Acknowledgments

The author is grateful to Professor C Domb and Dr D S Gaunt for their advice and continued interest throughout the project. This work was supported (in part) by a grant from the Science Research Council.

References

Baker G A Jr 1977 Phys. Rev. B 15 1552-9

- 1982 Proc. 1980 Cargèse Summer Institute on Phase Transitions (New York: Plenum)

Camp W J, Saul D M, Van Dyke J P and Wortis M 1976 Phys. Rev. B 14 3990-4001
Camp W J and Van Dyke J P 1975 Phys. Rev. B 11 2579-96
Domb C 1974a in Phase Transitions and Critical Phenomena ed C Domb and M S Green (New York: Academic) vol 3, ch 6
_— 1974b J. Phys. A: Math., Nucl. Gen. 7 L45-7
Freedman B A and Baker G A Jr 1982 J. Phys. A: Math. Gen. 15 L715-21
Gaunt D S 1982 in Proc. 1980 Cargèse Summer Institute on Phase Transitions (New York: Plenum)
Gaunt D S and Guttmann A J 1974 in Phase Transitions and Critical Phenomena ed C Domb and M S Green (New York: Academic) vol 3, ch 4
Katsura S, Yazaki N and Takaishi M 1977 Can. J. Phys. 55 1648-53
McKenzie S 1975 J. Phys. A: Math. Ger. 8 L102-5

- 1979a Can. J. Phys. 57 1239-45
- 1979b J. Phys. A: Math. Gen. 12 L185-8
- 1980 J. Phys. A: Math. Gen. 13 1007-13
- 1982 in Proc. 1980 Cargèse Summer Institute on Phase Transitions (New York: Plenum)

Moore M A, Jasnow D and Wortis M 1969 Phys. Rev. Lett. 22 940-3
Nickel B G 1982 in Proc. 1980 Cargèse Summer Institute on Phase Transitions (New York: Plenum)
Nickel B G and Sharpe B 1979 J. Phys. A: Math. Gen. 12 1819-34
Rehr J J, Joyce G S and Guttmann A J 1980 J. Phys. A: Math. Gen. 13 1587-1602
Roskies R Z 1981a Phys. Rev. B 23 6037-42
-- 1981b Phys. Rev. B 24 5305-17
Saul D M, Wortis M and Jasnow D 1975 Phys. Rev. B 11 2571-8
Sykes M F, Hunter D L, McKenzie D S and Heap B R 1972 J. Phys. A: Gen. Phys. 5667-73
Sykes M F, McKenzie D S and Heap B R 1974 J. Phys. A: Math., Nucl. Gen. 7 1576-88
Wortis M 1974 in Phase Transitions and Critical Phenomena ed C Domb and M S Green (New York:
Academic) vol 3, ch 3
Zinn-Justin J 1979 J. Physique 4063
_— 1981 J. Physique 42183

